Extremely Durable, Flexible Supercapacitors with Greatly Improved Performance at High Temperatures.

نویسندگان

  • Sung-Kon Kim
  • Hae Jin Kim
  • Jong-Chan Lee
  • Paul V Braun
  • Ho Seok Park
چکیده

The reliability and durability of energy storage devices are as important as their essential characteristics (e.g., energy and power density) for stable power output and long lifespan and thus much more crucial under harsh conditions. However, energy storage under extreme conditions is still a big challenge because of unavoidable performance decays and the inevitable damage of components. Here, we report high-temperature operating, flexible supercapacitors (f-SCs) that can provide reliable power output and extreme durability under severe electrochemical, mechanical, and thermal conditions. The outstanding capacitive features (e.g., ∼40% enhancement of the rate capability and a maximum capacitances of 170 F g(-1) and 18.7 mF cm(-2) at 160 °C) are attributed to facilitated ion transport at elevated temperatures. Under high-temperature operation and/or a flexibility test in both static and dynamic modes at elevated temperatures >100 °C, the f-SCs showed extreme long-term stability of 100000 cycles (>93% of initial capacitance value) and mechanical durability after hundreds of bending cycles (at bend angles of 60-180°). Even at 120 °C, the versatile design of tandem serial and parallel f-SCs was demonstrated to provide both desirable energy and power requirements at high temperatures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cost Effective and Scalable Synthesis of MnO2 Doped Graphene in a Carbon Fiber/PVA: Superior Nanocomposite for High Performance Flexible Supercapacitors

In the current study, we report new flexible, free standing and high performance electrodes for electrochemical supercapacitors developed througha scalable but simple and efficient approach. Highly porous structures based on carbon fiber and poly (vinyl alcohol) (PVA) were used as a pattern. The electrochemical performances of Carbon fiber/GO-MnO2/CNT supercapacitors were characteriz...

متن کامل

High performance of a solid-state flexible asymmetric supercapacitor based on graphene films.

Solid-state flexible energy storage devices hold the key to realizing portable and flexible electronic devices. Achieving fully flexible energy storage devices requires that all of the essential components (i.e., electrodes, separator, and electrolyte) with specific electrochemical and interfacial properties are integrated into a single solid-state and mechanically flexible unit. In this study,...

متن کامل

The Prevention of Environmental Damage in Durable Unsymmetrical Huge-capacitors Based on MnO2 and Fe2O3 Nanotubes

The prevention of environmental damage in durable unsymmetrical huge-capacitor (UHC) with α-MnO2 nanotubes and amorphous Fe2O3 nanotubes grown on flexible carbon fabric is first designed and fabricated. The assembled novel flexible UHC device with an extended operating voltage window of 1.6 V exhibits excellent performance such as a high energy density of 0.55 mWh/cm3 and good rate capability. ...

متن کامل

All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes.

All-solid-state flexible supercapacitors were fabricated using carbon nanotubes (CNTs), regular office papers, and ionic-liquid-based gel electrolytes. Flexible electrodes were made by coating CNTs on office papers by a drop-dry method. The gel electrolyte was prepared by mixing fumed silica nanopowders with ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][NTf...

متن کامل

Hydrogenated ZnO core-shell nanocables for flexible supercapacitors and self-powered systems.

Although MnO2 is a promising material for supercapacitors (SCs) due to its excellent electrochemical performance and natural abundance, its wide application is limited by poor electrical conductivity. Inspired by our results that the electrochemical activity and electrical conductivity of ZnO nanowires were greatly improved after hydrogenation, we designed and fabricated hydrogenated single-cry...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS nano

دوره 9 8  شماره 

صفحات  -

تاریخ انتشار 2015